
 1

Introduction to GPU - CUDA

 2

Why Massively Parallel Processor

A quiet revolution and
potential build -up (G80 numbers)

¸ Calculation: 544 GFLOPS vs.
264.96 GFLOPS (FP-64)

¸ Memory Bandwidth: 153.6GB/s
vs. 25.6 GB/s

¸ Until recently, programmed
through graphics API

¸ GPU in every PC and workstation
ð massive volume and potential
impact

GTX 680

2012

 3

Future Apps in Concurrent World

¸ Exciting applications in future mass computing market
ð Molecular dynamics simulation
ð Video and audio coding and manipulation
ð 3D imaging and visualization
ð Consumer game physics
ð Virtual reality products

¸ Various granularities of parallelism exist, buté
ð programming model must not hinder parallel implementation
ð data delivery needs careful management

¸ Introducing domain -specific architecture
ð CUDA for GPGPU

 4

What is GPGPU?

¸ General Purpose computation using GPU in applications
(other than 3D graphics)

ð GPU accelerates critical path of application

¸ Data parallel algorithms leverage GPU attributes

ð Large data arrays, streaming throughput

ð Fine-grain SIMD (single -instruction multiple -data) parallelism

ð Low-latency floating point (FP) computation

¸ Applications ð see //GPGPU.org

ð Game effects (FX) physics, image processing

ð Physical modeling, computational engineering, matrix algebra,
convolution, correlation, sorting

 5

GPU and CPU: The Differences

¸ GPU

ð More transistors devoted to computation, instead of caching
or flow control

ð Suitable for data -intensive computation

ðHigh arithmetic/memory operation ratio

DRAM

Cache

ALU
Control

ALU

ALU

ALU

DRAM

CPU GPU

 6

GPU Evolution

Å 1980ôs ï No GPU. PC used VGA controller

Å 1990ôs ï Add more function into VGA controller

Å 1997 ï 3D acceleration functions:

 Hardware for triangle setup and rasterization

 Texture mapping

 Shading

Å 2000 ï A single chip graphics processor (beginning of GPU

 term)

Å 2005 ï Massively parallel programmable processors

Å 2007 ï CUDA (Compute Unified Device Architecture)

 7

Basic Unified GPU Architecture

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader stages execute on the array of

unified processors, and the logical graphics pipeline dataflow recirculates through the processors. Copyright É 2009

Elsevier, Inc. All rights reserved.

 8

Processor Array

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14

streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA

GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM

has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit,

and a shared memory. Copyright É 2009 Elsevier, Inc. All rights reserved.

 9

CUDA

¸ Targeted software stack
ð Compute oriented drivers,

language, and tools

¸ Driver for loading computation
programs into GPU
ð Standalone Driver - Optimized

for computation
ð Guaranteed maximum download &

readback speeds
ð Explicit GPU memory

management

¸ òCompute Unified Device Architectureó

¸ General purpose programming model
ð User kicks off batches of threads on the GPU
ð GPU = dedicated super -threaded, massively data parallel co -processor

 10

CUDA Programming Model

¸ The GPU is viewed as a compute device that:
ð Is a coprocessor to the CPU or host
ð Has its own DRAM (device memory)
ð Runs many threads in parallel

ð Hardware switching between threads (in 1 cycle) on
long-latency memory reference

ð Overprovision (1000s of threads) Ą hide latencies

¸ Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

¸ Differences between GPU and CPU threads
ð GPU threads are extremely lightweight

ð Very little creation overhead
ð GPU needs 1000s of threads for full efficiency

ð Multi -core CPU needs only a few

 11

Thread Batching: Grids and Blocks

¸ Kernel executed as a grid of thread
blocks
ð All threads share data memory

space

¸ Thread block is a batch of threads,
can cooperate with each other by:
ð Synchronizing their execution:

For hazard -free shared memory
accesses

ð Efficiently sharing data through
a low latency shared memory

¸ Two threads from two different
blocks cannot cooperate
ð (Unless thru slow global memory)

¸ Threads and blocks have IDs

Host

Kernel

1

Kernel

2

Device

Grid 1

Block

(0, 0)

Block

(1, 0)

Block

(2, 0)

Block

(0, 1)

Block

(1, 1)

Block

(2, 1)

Grid 2

Block (1, 1)

Thread

(0, 1)

Thread

(1, 1)

Thread

(2, 1)

Thread

(3, 1)

Thread

(4, 1)

Thread

(0, 2)

Thread

(1, 2)

Thread

(2, 2)

Thread

(3, 2)

Thread

(4, 2)

Thread

(0, 0)

Thread

(1, 0)

Thread

(2, 0)

Thread

(3, 0)

Thread

(4, 0)

Courtesy: NDVIA

 12

Extended C

¸ Declspecs
ð global, device,

shared, local,
constant

¸ Keywords
ð threadIdx, blockIdx

¸ Intrinsics
ð __syncthreads

¸ Runtime API
ð Memory, symbol,

execution
management

¸ Function launch

__device__ float filter[N];

__global__ void convolve (float *image) {

 __shared__ float region[M];

 ...

 region[threadIdx] = image[i];

 __syncthreads()

 ...

 image[j] = result;

}

// Allocate GPU memory

void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

convolve<<<100, 10>>> (myimage);

 13

CUDA Function Declarations

Executed
on the:

Only callable
from the:

__device__ float DeviceFunc() device device

__global__ void KernelFunc() device Host

__host__ float HostFunc() host Host

¸ __global__ defines a kernel function

ð Must return void

¸ __device__ and __host__ can be used together

 14

CUDA Device Memory Space Overview

¸ Each thread can:
ð R/W per -thread registers
ð R/W per -thread local memory
ð R/W per -block shared memory
ð R/W per -grid global memory
ð Read only per-grid constant

memory
ð Read only per-grid texture

memory

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

¸ The host can R/W global,
constant , and texture
memories

 15

Global, Constant, and Texture Memories

(Long Latency Accesses)

¸ Global memory

ðMain means of
communicating R/W Data
between host and device

ðContents visible to all
threads

¸ Texture and Constant
Memories

ðConstants initialized by
host

ðContents visible to all
threads

(Device) Grid

Constant

Memory

Texture

Memory

Global

Memory

Block (0, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local

Memory

Thread (0, 0)

Registers

Local

Memory

Thread (1, 0)

Registers

Host

Courtesy: NDVIA

 16

Calling Kernel Function ï Thread Creation

¸ A kernel function must be called with an execution configuration :

__global__ void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); // 256 threads per block

size_t SharedMemBytes = 64; // 64 bytes of shared memory

KernelFunc <<< DimGrid, DimBlock, SharedMemBytes >>>(...);

¸ Any call to a kernel function is asynchronous (CUDA 1.0 & later),
explicit synch needed for blocking

¸ Recursion in kernels supported (in 5.0/Kepler+)

 17

Sample Code: Increment Array

main() { float *a_h, *a_d; int i, N=10; size_t size = N*sizeof(float);
 a_h = (float *)malloc(size);
 for (i=0; i<N; i++) a_h[i] = (float)i;

 // allocate array on device
 cudaMalloc((void **) &a_d, size);

 // copy data from host to device
 cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);

 // do calculation on device:
 // Part 1 of 2. Compute execution configuration
 int blockSize = 4;
 int nBlocks = N/blockSize + (N%blockSize == 0?0:1);
 // Part 2 of 2. Call incrementArrayOnDevice kernel
 incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N);

 // Retrieve result from device and store in b_h
 cudaMemcpy(b_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);

 // cleanup
 free(a_h);
 cudaFree(a_d);
}

__global__ void incrementArrayOnDevice(float *a, int N)

{

 int idx = blockIdx.x*blockDim.x + threadIdx.x;

 if (idx<N) a[idx] = a[idx]+1.f;

}

 18

Execution model

Multiple levels of parallelism

¸ Thread block

ð Max. 1024 threads/block

ð Communication through
shared memory (fast)

ð Thread guaranteed to be resident

ð threadIdx, blockIdx

ð __syncthreads()
Ą barrier for this block only!
avoid RAW/WAR/WAW hazards
when refõ shared/global memory

¸ Grid of thread blocks

ð F<<<nblocks, nthreads>>>(a, b, c)

 19

Compiling CUDA

¸ Call nvcc (driver) -- also C++/Fortran support

¸ LLVM front end (used to be EDG)

ð Separate GPU & CPU code

¸ LLVM back end (used to be Open64)

ð Generates GPU TPX assembly

¸ Parallel Threads eXecution (PTX)

ð Virtial machine and ISA

ð Programming model

ð Execution resources and state

¸ Extensions

ð OpenACC: see ARC web page,
like OpenMP but for GPUs

ð OpenCL (not covered here)

 20

Single-Program Multiple-Data (SPMD)

¸ CUDA integrated CPU + GPU application C program
ð Serial C code executes on CPU
ð Parallel Kernel C code executes on GPU thread

blocks
CPU Serial Code

Grid 0

. . .

. . .

GPU Parallel Kernel

KernelA<<< nBlk, nTid >>>(args);

Grid 1

CPU Serial Code

GPU Parallel Kernel

KernelB<<< nBlk, nTid >>>(args);

 21

Hardware Implementation:
Execution Model

¸ Each thread block of a grid is split into warps, each gets executed
by one multiprocessor (SM)

ð The device processes only one grid at a time

¸ Each thread block is executed by one multiprocessor

ð So that the shared memory space resides in the on-chip shared
memory

¸ A multiprocessor can execute multiple blocks concurrently
ð Shared memory and registers are partitioned among the threads of all

concurrent blocks

ð So, decreasing shared memory usage (per block) and register usage
(per thread) increases number of blocks that can run concurrently

 22

Threads, Warps, Blocks

¸ There are (up to) 32 threads in a Warp

ð Only <32 when there are fewer than 32 total threads

¸ There are (up to) 32 Warps in a Block

¸ Each Block (and thus, each Warp) executes on a single SM

¸ GF110 has 16 SMs

¸ At least 16 Blocks required to òfilló the device

¸ More is better

ð If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

 23

More Terminology Review

¸ device = GPU = set of multiprocessors

¸ Multiprocessor = set of processors & shared memory

¸ Kernel = GPU program

¸ Grid = array of thread blocks that execute a kernel

¸ Thread block = group of SIMD threads that execute a kernel
and can communicate via shared memory

Memory Location Cached Access Who

Local Off -chip No Read/write One thread

Shared On-chip N/A - resident Read/write All threads in a block

Global Off -chip No Read/write All threads + host

Constant Off -chip Yes Read All threads + host

Texture Off -chip Yes Read All threads + host

 24

Tesla Architecture

¸ Used for Technical and Scientific Computing

¸ L1/L2 Data Cache
ð Allows for caching of global and local data
ð Same on-chip memory used for Shared and L1
ð Configurable at kernel invocation

 25

Fermi Architecture

¸ L1 cache for each SM
ð Shared memory/L1: use same memory
ð Configurable partitions at kernel invocation
ð 48KB shared/ 16KB L1 or 16KB shared /48KB L1

¸ Unified 768KB L2 Data Cache
ð Services all load, store, and texture requests

