Introduction to GPU - CUDA

Why Massively Parallel Processor

A quiet revolution and
potential build -up (G80 numbers)

Calculation: 544 GFLOPS vs.
264.96 GFLOPS (FP-64)

Memory Bandwidth: 153.6GB/s o0

VS. 256 GB/S s NVIDIA GPU Single Precision
1250 =—p==NVIDIA GPU Double Precision
. =—p==|ntel CPU Single Precision
Until recently, programmed LA O Fackn

1000

through graphics API

Tesla C2050
500

GPU in every PC and workstation |
d massive volume and potential a5 v Westmere
impact -

P Harpertown
entiuni 4
Sep-01 Jan03 Jun04 Oct-05 Mar07 Jul-08 Dec-09 2012

Future Apps in Concurrent World

Exciting applications in future mass computing market
0 Molecular dynamics simulation
0 Video and audio coding and manipulation
o 3D imaging and visualization
0 Consumer game physics
o0 Virtual reality products

Various granularitiesof par al | el i sm exi s
0 programming model must not hinder parallel implementation
0 data delivery needs careful management

Introducing domain -specific architecture
0 CUDA for GPGPU

What i1s GPGPU?

General Purpose computation using GPU in applications
(other than 3D graphics)

0 GPU accelerates critical path of application

Data parallel algorithms leverage GPU attributes
0 Large data arrays, streaming throughput

[]:ZGPU

0 Fine-grain SIMD (single -instruction multiple -data) parallelism

o0 Low-latency floating point (FP) computation

Applications & see //[GPGPU.org
0 Game effects (FX) physics, image processing

0 Physical modeling, computational engineering, matrix algebra,

convolution, correlation, sorting

GPU and CPU: The Differences

DRAM

CPU GPU

GPU

o0 More transistors devoted to computation, instead of caching
or flow control

0 Suitable for data -intensive computation
oHigh arithmetic/memory operation ratio

GPU Evolution

A

A

A

1 9 8 0 8laGPU. PC used VGA controller

1 9 9 G Add more function into VGA controller

19971 3D acceleration functions:
Hardware for triangle setup and rasterization
Texture mapping
Shading

2000 T A single chip graphics processor (beginning of GPU
term)

20051 Massively parallel programmable processors

2007 1 CUDA (Compute Unified Device Architecture)

Basic Unified GPU Architecture

Input Vertex
Assembler Shader

Geometry
Shader

Setup &

< Rasterizer

Pixel
Shader

Raster Operations/
Output Merger

FIGURE A.2.4 Logical pipeline mapped to physical processor3.he programmable shader stages execute on the array of

uni fied processors, and the | ogical graphics pipeline de
Elsevier, Inc. All rights reserved.

Processor Array

GPU

| Host Interface I

I Viewport/Clip/
Setup/Raster/
| Input Assembler ZCull

Vertex Work Pixel Work Compute Work V4
Distribution Distribution Distribution 3 MT Issue

/ I-Cache

| | P
| [| | T | | Z s C-Cache
TPC | TPC ! TPC TPC TPC TPC TPC ¢/ y
I]]]

[sFl
E8l
57l
[sFl
LJ

SM
[[1| I [[7 7
[[[I [1| | 7 T
SM SM SM SM SM SM SM SM SM SM SM SM SM SM

Shared hared
Memory lemory

EEEE

Shared Share
Memory Memor

| Texture unit | Texture Unit [Texture Unit || |[__Texture unit || |[_ Texture Unit |
[C—Texs) Tox L1 e || | || | — | SFU | | SFU
N N — 1 1T 1T 1T 71T 1
(Interconnection Network Shared
|
[Rop [[tz | [mor|[2 | [mor | [tz | [mor |[tz | Memory
i i i i i i i i
DRAM DRAM DRAM DRAM

Sha Shared
Memory Memory

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14
streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA
GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM
has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit,
and a shared memory. Copyright E 2009 Elsevier, l nc. A8l

CUDA

oCompute Unified Device Ar chi t ect ur eo

General purpose programming model

0 User kicks off batches of threads on the GPU

0 GPU = dedicated super-threaded, massively data parallel co -processor
Targeted software stack

0 Compute oriented drivers, cpu
language, and tools

Application

‘

Driver for loading computation CUDA Libraries
programs into GPU . :
0 Standalone Driver - Optimized CUDA Runtime
for computation . I
0 Guaranteed maximum download & CUDA Driver
readback speeds , |
0 Explicit GPU memory GPu

management

CUDA Programming Model

The GPU is viewed as a compute device that:
0 Is a coprocessor to the CPU or host
0 Has its own DRAM (device memory)
0 Runs manythreads in parallel

0 Hardware switching between threads (in 1 cycle) on
long-latency memory reference

0 Overprovision (1000s of threads) A hide latencies

Data-parallel portions of an application are executed on the
device as kernels which run in parallel on many threads

Differences between GPU and CPU threads
0 GPU threads are extremely lightweight
o0 Very little creation overhead
0 GPU needs 1000s of threads for full efficiency
0 Multi -core CPU needs only a few

10

Thread Batching: Grids and Blocks

Kernel executed as a grid of thread Host Device

blocks Grid 1
0 All threads share data memory Kernel M [giock || Block || Block
space 1 (0, 0) (1, 0) (2,0)
Thread block 1s a batch of threads, Block” Block " Block
can cooperate with each other by: 04) || @.1) |} @1

0 Synchronizing their execution:
For hazard -free shared memory g
accesses Kernel ool

2
o0 Efficiently sharing data through
a low latency shared memory

© Grid 2

, Block (1, 1)
Two threads from two different
blocks cannot cooperate

0 (Unless thru slow global memory)

Threads and blocks have IDs

Courtesy: NDVIA 11

Extended C

Decl specs __device__float filter[N];
0 global, device : :
’ ' lobal _ void convolve (float *image
shared, local, — I — (9¢) 4
constant __shared__ float region[M];
Keywords
o0 threadldx, blockldx region[threadldx] = imagel[i;
Intrinsics
& _ syncthreads _syncthreads()
Runtime API image(j] = result;
o Memory, symbol, J
execution Il Allocate GPU memory
management void *myimage = cudaMalloc(bytes)

// 100 blocks, 10 threads per block

Function launch convolve<<<100, 10>>> (myimage);

CUDA Function Declarations

Executed Only callable
on the: from the:
~_device float DeviceFunc() device device
~_global void KernelFunc() device Host
__host__ float HostFunc() host Host

__global defines a kernel function
0 Must return void

__device_ and __host can be used together

13

C

UDA Device Memor

Space Overview

Each thread can:
R/W per -thread registers

Qx Ox Ox Ox Ox

memory

0 Read only per-grid texture
memory

The host can R/W global,

R/W per -thread local memory
R/W per -block shared memory
R/W per -grid global memory
Read only per-grid constant

constant , and texture
memories

Host

(Device) Grid

Block (0, 0)

|

Block (1, 0)

|

Thread (0, 0)| Thread (1, 0)

Thread (0, 0)

Thread (1, 0)

14

Global, Constant, and Texture Memories
(Long Latency Accesses)

Global memory (Device) Grid
0 Main means of 8106k (0.0 Slock (1. 0)

communicating R/W Data

between host and device
Thread (0, 0)| Thread (1, 0)| | Thread (0, 0)| Thread (1, 0)

0 Contents visible to all
threads

Texture and Constant
Memories .
0 Constants initialized by

host

o Contents visible to all
threads

Courtesy: NDVIA 15

Calling Kernel Function T Thread Creation

A kernel function must be called with an execution configuration

~global void KernelFunc(...);

dim3 DimGrid(100, 50); // 5000 thread blocks

dim3 DimBlock(4, 8, 8); /Il 256 threads per block

size_t SharedMemBytes = 64; Il 64 bytes of shared memory
KernelFunc <<< DimGrid, DimBlock, SharedMemBytes >>>(...);

Any call to a kernel function is asynchronous (CUDA 1.0 & later),
explicit synch needed for blocking

Recursion in kernels supported (in 5.0/Kepler+)

16

Sample Code: Increment Array

main() { float *a_h, *a_d; int i, N=10; size_t size = N*sizeof(float);
a_h = (float *)malloc(size); ,
for (i=0; i<N; i++) a_h([i] = (float)i; blockDim.x 4

/I allocate array on device blocklds.x 0 1 2

cudaMalloc((void **) &a_d, size); - | | J|L | || | | = B JIL =
readldx x JE Nl E 3

/I copy data from host to device
cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice);

dx = blockDim x*blockldxx | I

: . af = |
/I do calculation on device: il s
// Part 1 of 2. Compute execution configuration
int blockSize = 4;
int nBlocks = N/blockSize + (N%blockSize == 0?0:1);

[
kernel if (idx < N) alidx] = afidx}+1; |

Il Part 2 of 2. Call incrementArrayOnDevice kernel
incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N);
/I Retrieve result from device and store in b_h
cudaMemcpy(b_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost);
]{/ C'?‘a”ﬁ)p __global__ void incrementArrayOnDevice(float *a, int N)
ree(a_h);
cudaFree(a_d); { . .
} (a_d) int idx = blockldx.x*blockDim.x + threadldx.x;
if (idx<N) a[idx] = a[idx]+1.f;
}

Execution model

Thread
1 ldentified by threadldx

Multiple levels of parallelism

Thread block
0 Max. 1024 threads/block

d Communication through Thread Block
shared memory (fast) Identified by blockldx

0 Thread guaranteed to be resident
threadldx, blockldx

0 __ syncthreads()
A barrier for this block only! Grid of Thread Blocks
avoid RAW/WAR/WAW hazards
when refd shared

Grid of thread blocks
0 F<<<nblocks, nthreads>>>(a, b, c)

Qx

Result data array

18

Compiling CUDA

Call nvcc (driver) -- also C++/Fortra C/C++ CUDA

LLVM front end (used to be EDG) Applicaon
0 Separate GPU & CPU code

LLVM back end (used to be Open64)
0 Generates GPU TPX assembly

Parallel Threads eXecution (PTX)

o Virtial machine and ISA

0 Programming model
. _ q PTX to Target
xecution resources and state Compiler
Extensions

0 OpenACC: see ARC web page,
like OpenMP but for GPUs

0 OpenCL (not covered here)

Target code

Single-Program Multiple-Data (SPMD)

CUDA integrated CPU + GPU application C program
0 Serial C code executes on CPU

0 Parallel Kernel C code executes on GPU thread
blocks 5

CPU Serial Code

Grid O
GPU Parallel Kernel D || S || RS S
KernelA<<< nBIk, nTid >>>(args); ||+ ; ; ;
CPU Serial Code
Grid 1
GPU Parallel Kernel N | | > || S

KernelB<<< nBlk, nTid >>>(args); S S || S > || S S| ... | S

20

Hardware Implementation:
Execution Model

Each thread block of a grid is split into warps, each gets executed
by one multiprocessor (SM)

0 The device processes only one grid at a time

Each thread block is executed by one multiprocessor
0 So that the shared memory space resides inthe on-chip shared
memory

A multiprocessor can execute multiple blocks concurrently
0 Shared memory and registers are partitioned among the threads of all
concurrent blocks

0 So, decreasing shared memory usage (per block) and register usage
(per thread) increases number of blocks that can run concurrently

21

Threads, Warps, Blocks

There are (up to) 32 threads in a Warp
0 Only <32 when there are fewer than 32 total threads

There are (up to) 32 Warps in a Block
Each Block (and thus, each Warp) executes on a single SM
GF110 has 16 SMs

At | east 16 Bl ocks required to o0f

More is better

0 If resources (registers, thread space, shared memory)
allow, more than 1 Block can occupy each SM

22

More Terminology Review

device = GPU = set of multiprocessors
Multiprocessor = set of processors & shared memory
Kernel = GPU program

Grid = array of thread blocks that execute a kernel

Thread block = group of SIMD threads that execute a kernel
and can communicate via shared memory

Memory Location Cached Access Who

Local Off -chip No Read/write One thread

Shared On-chip N/A - resident Read/write All threads in a block
Global Off -chip No Read/write All threads + host
Constant Off -chip Yes Read All threads + host
Texture Off -chip Yes Read All threads + host

Tesla Architecture

e — T

{ Host
C

J
)

}

Host
Memory

LI

Thread Execution Contral Unit

|
P P ! I

[i
Thised Tepsd Terepd Tewmi] Thiead
Procesmam: Prommar ST Procemar)]
Sperial Specal
Functianlime Funcion Unit Funcon Unit Fundtion Lind Fumguion Usk
o E 3 E o E o L3
Lordl Local Local Local Local
Merony Kierneny Koy MNirneny Mieri
F b b k. -

Device Memory

Used for Technical and Scientific Computing

L1/L2 Data Cache
o0 Allows for caching of global and local data
0 Same on-chip memory used for Shared and L1
0 Configurable at kernel invocation

Fermi Architecture

L1 cache for each SM
0 Shared memory/L1: use same memaory

0 Configurable partitions at kernel invocation
0 48KB shared/ 16KB L1or 16KB shared/48KB L1

Unified 768KB L2 Data Cache
0 Services all load, store, and texture requests

25

