
 1 

 
 

Introduction to GPU - CUDA 
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Why Massively Parallel Processor 

A quiet revolution and  
potential build -up (G80 numbers) 

¸ Calculation: 544 GFLOPS vs. 
264.96 GFLOPS (FP-64)  

¸ Memory Bandwidth: 153.6GB/s 
vs. 25.6 GB/s  

¸ Until recently, programmed 
through graphics API  

 

¸ GPU in every PC and workstation 
ð massive volume and potential 
impact  

GTX 680 

2012 
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Future Apps in Concurrent World 

¸ Exciting applications in future mass computing market  
ð Molecular dynamics  simulation  
ð Video and audio coding and manipulation 
ð 3D imaging and visualization  
ð Consumer game physics 
ð Virtual reality products  

¸ Various granularities of  parallelism exist, buté 
ð programming model must not hinder parallel implementation  
ð data delivery needs careful management  

¸ Introducing domain -specific architecture  
ð CUDA for GPGPU 
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What is GPGPU? 

¸ General Purpose computation using GPU in applications  
(other than 3D graphics)  

ð GPU accelerates critical path of application  

 

¸ Data parallel algorithms leverage GPU attributes  

ð Large data arrays, streaming throughput  

ð Fine-grain SIMD (single -instruction multiple -data) parallelism  

ð Low-latency floating point (FP) computation  

 

¸ Applications ð see //GPGPU.org 

ð Game effects (FX) physics, image processing  

ð Physical modeling, computational engineering, matrix algebra, 
convolution, correlation, sorting  
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GPU and CPU: The Differences 

 

 

 

 

 

 

¸ GPU 

ð More transistors devoted to computation, instead of caching 
or flow control  

ð Suitable for data -intensive computation  

ðHigh arithmetic/memory operation ratio  
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GPU Evolution 

 

Å 1980ôs ï No GPU.  PC used VGA controller 

Å 1990ôs ï Add more function into VGA controller 

Å 1997 ï 3D acceleration functions: 

      Hardware for triangle setup and rasterization 

      Texture mapping 

      Shading 

Å 2000 ï A single chip graphics processor ( beginning of GPU  

      term) 

Å 2005 ï Massively parallel programmable processors 

Å 2007 ï CUDA (Compute Unified Device Architecture)  
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Basic Unified GPU Architecture 

FIGURE A.2.4 Logical pipeline mapped to physical processors. The programmable shader stages execute on the array of 

unified processors, and the logical graphics pipeline dataflow recirculates through the processors. Copyright É 2009 

Elsevier, Inc. All rights reserved. 
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Processor Array 

FIGURE A.2.5 Basic unified GPU architecture. Example GPU with 112 streaming processor (SP) cores organized in 14 

streaming multiprocessors (SMs); the cores are highly multithreaded. It has the basic Tesla architecture of an NVIDIA 

GeForce 8800. The processors connect with four 64-bit-wide DRAM partitions via an interconnection network. Each SM 

has eight SP cores, two special function units (SFUs), instruction and constant caches, a multithreaded instruction unit, 

and a shared memory. Copyright É 2009 Elsevier, Inc. All rights reserved. 
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CUDA 

¸ Targeted software stack  
ð Compute oriented drivers, 

language, and tools 

¸ Driver for loading computation 
programs into GPU 
ð Standalone Driver - Optimized 

for computation  
ð Guaranteed maximum download & 

readback speeds  
ð Explicit GPU memory 

management 
 

¸ òCompute Unified Device Architectureó 

¸ General purpose programming model  
ð User kicks off batches of threads on the GPU  
ð GPU = dedicated super -threaded, massively data parallel co -processor  
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CUDA Programming Model 

¸ The GPU is viewed as a compute device that:  
ð Is a coprocessor to the CPU or host  
ð Has its own DRAM ( device memory) 
ð Runs many threads  in parallel  

ð Hardware switching between threads (in 1 cycle) on 
long-latency memory reference  

ð Overprovision  (1000s of threads) Ą hide latencies  

¸ Data-parallel portions of an application are executed on the 
device as kernels  which run in parallel on many threads  

¸ Differences between GPU and CPU threads  
ð GPU threads are extremely lightweight  

ð Very little creation overhead  
ð GPU needs 1000s of threads for full efficiency  

ð Multi -core CPU needs only a few 
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Thread Batching: Grids and Blocks 

¸ Kernel executed as a grid of thread 
blocks 
ð All threads share data memory 

space 

¸ Thread block  is a batch of threads, 
can cooperate  with each other by:  
ð Synchronizing their execution:  

For hazard -free shared memory 
accesses 

ð Efficiently sharing data through 
a low latency shared memory  

¸ Two threads from two different 
blocks cannot cooperate  
ð (Unless thru slow global memory)  

¸ Threads and blocks have IDs  
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Extended C 

¸ Declspecs 
ð global, device, 

shared, local, 
constant  

¸ Keywords 
ð threadIdx, blockIdx  

¸ Intrinsics  
ð __syncthreads  

¸ Runtime API  
ð Memory, symbol, 

execution 
management 

 

¸ Function launch  

__device__ float filter[N];  

 

__global__ void convolve (float *image)  {  

 

  __shared__ float region[M];  

  ...  

 

  region[threadIdx] = image[i];  

 

 

  __syncthreads()   

  ...  

  image[j] = result;  

}  

 

// Allocate GPU memory  

void *myimage = cudaMalloc(bytes)  

 

 

// 100 blocks, 10 threads per block  

convolve<<<100, 10>>> (myimage);  



 13 

 
 

CUDA Function Declarations 

Executed 
on the:  

Only callable 
from the:  

__device__  float DeviceFunc()  device device 

__global__  void  KernelFunc()  device Host  

__host__    float HostFunc()  host  Host  

 

¸ __global__  defines a kernel function  

ð Must return void  

¸ __device__  and __host__  can be used together  
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CUDA Device Memory Space Overview 

¸ Each thread can:  
ð R/W per -thread registers  
ð R/W per -thread local memory 
ð R/W per -block shared memory  
ð R/W per -grid global memory 
ð Read only per-grid constant 

memory 
ð Read only per-grid texture 

memory 
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constant , and texture  
memories 



 15 

 
 

Global, Constant, and Texture Memories 

(Long Latency Accesses) 

¸ Global memory 

ðMain means of 
communicating R/W Data 
between host and device 

ðContents visible to all 
threads  

¸ Texture and Constant 
Memories  

ðConstants initialized by 
host  

ðContents visible to all 
threads  
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Calling Kernel Function ï Thread Creation 

¸ A kernel function must be called with an execution configuration : 

 

__global__ void KernelFunc(...);  

dim3    DimGrid(100, 50);    // 5000 thread blocks   

dim3    DimBlock(4, 8, 8);   // 256 threads per block   

size_t SharedMemBytes = 64; // 64 bytes of shared memory  

KernelFunc <<< DimGrid, DimBlock, SharedMemBytes >>>(...);  

 

¸ Any call to a kernel function is asynchronous (CUDA 1.0 & later), 
explicit synch needed for blocking  

¸ Recursion in kernels supported (in 5.0/Kepler+)  
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Sample Code: Increment Array 

main() { float *a_h, *a_d; int i, N=10; size_t size = N*sizeof(float); 
  a_h = (float *)malloc(size); 
  for (i=0; i<N; i++) a_h[i] = (float)i; 
 
  // allocate array on device  
  cudaMalloc((void **) &a_d, size); 
   
  // copy data from host to device  
  cudaMemcpy(a_d, a_h, sizeof(float)*N, cudaMemcpyHostToDevice); 
   
  // do calculation on device: 
  // Part 1 of 2. Compute execution configuration 
  int blockSize = 4; 
  int nBlocks = N/blockSize + (N%blockSize == 0?0:1); 
  // Part 2 of 2. Call incrementArrayOnDevice kernel  
  incrementArrayOnDevice <<< nBlocks, blockSize >>> (a_d, N); 
   
  // Retrieve result from device and store in b_h 
  cudaMemcpy(b_h, a_d, sizeof(float)*N, cudaMemcpyDeviceToHost); 
 
  // cleanup 
  free(a_h);  
  cudaFree(a_d);  
} 
 

__global__ void incrementArrayOnDevice(float *a, int N) 

{ 

  int idx = blockIdx.x*blockDim.x + threadIdx.x; 

  if (idx<N) a[idx] = a[idx]+1.f; 

} 
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Execution model 

Multiple levels of parallelism  

¸ Thread block  

ð Max. 1024 threads/block  

ð Communication through  
shared memory (fast)  

ð Thread guaranteed to be resident  

ð threadIdx, blockIdx  

ð __syncthreads()  
Ą barrier for this block only!  
avoid RAW/WAR/WAW hazards  
when refõ shared/global memory 

¸ Grid of thread blocks  

ð F<<<nblocks, nthreads>>>(a, b, c) 
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Compiling CUDA 

¸ Call nvcc (driver) --  also C++/Fortran support  

¸ LLVM front end (used to be EDG)  

ð Separate GPU & CPU code 

¸ LLVM back end (used to be Open64)  

ð Generates GPU TPX assembly 

¸ Parallel Threads eXecution (PTX)  

ð Virtial machine and ISA  

ð Programming model 

ð Execution resources and state  

¸ Extensions  

ð OpenACC: see ARC web page,  
like OpenMP but for GPUs  

ð OpenCL (not covered here)  
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Single-Program Multiple-Data (SPMD) 

¸ CUDA integrated CPU + GPU application C program  
ð Serial C code executes on CPU 
ð Parallel Kernel C code executes on GPU thread 

blocks 
CPU Serial Code 
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Hardware Implementation:  
Execution Model 

¸ Each thread block of a grid is  split into warps, each gets executed 
by one multiprocessor (SM)  

ð The device processes only one grid at a time  

¸ Each thread block is executed by one multiprocessor  

ð So that the shared memory space resides in the on-chip shared 
memory 

¸ A multiprocessor can execute  multiple blocks concurrently  
ð Shared memory and registers are partitioned among the threads of all 

concurrent blocks  

ð So, decreasing shared memory usage (per block) and register usage 
(per thread) increases number of blocks that can run concurrently  



 22 

 
 

Threads, Warps, Blocks 

¸ There are (up to) 32 threads in a Warp  

ð Only <32 when there are fewer than 32 total threads  

¸ There are (up to) 32 Warps in a Block  

¸ Each Block (and thus, each Warp) executes on a single SM  

¸ GF110 has 16 SMs 

¸ At least 16 Blocks required to òfilló the device 

¸ More is better  

ð If resources (registers, thread space, shared memory) 
allow, more than 1 Block can occupy each SM  
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More Terminology Review 

¸ device = GPU = set of multiprocessors  

¸ Multiprocessor = set of processors & shared memory  

¸ Kernel = GPU program 

¸ Grid = array of thread blocks that execute a kernel  

¸ Thread block = group of SIMD threads that execute a kernel 
and can communicate via shared memory  

Memory  Location  Cached Access Who 

Local Off -chip No Read/write  One thread  

Shared  On-chip N/A - resident  Read/write  All threads in a block  

Global Off -chip No Read/write  All threads + host  

Constant  Off -chip Yes Read All threads + host  

Texture  Off -chip Yes Read All threads + host  
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Tesla Architecture 

¸ Used for Technical and Scientific Computing  

¸ L1/L2 Data Cache  
ð Allows for caching of global and local data  
ð Same on-chip memory used for Shared and L1  
ð Configurable at kernel invocation  
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Fermi Architecture 

¸ L1 cache for each SM  
ð Shared memory/L1: use same memory  
ð Configurable partitions at kernel invocation  
ð 48KB shared/ 16KB L1 or 16KB shared /48KB L1 

¸ Unified 768KB L2 Data Cache  
ð Services all load, store, and texture requests  
 


